Before moving forward **Program to Find Transpose of a Matrix**, let’s first understand what is Transpose Matrix.

The **transpose** of a matrix is a new matrix whose rows are the columns of the original. (This makes the columns of the new matrix the rows of the original). Here is a matrix and its transpose:

In the above image **T** stands for **Transpose**.

This program takes a matrix of order ** r*c** from the user and computes the transpose of the matrix.

where **r** is **row** and **c** is **column**

#### Program to Find Transpose of a Matrix

```
#include <iostream>
using namespace std;
int main()
{
int a[10][10], trans[10][10], r, c, i, j;
cout << "Enter rows and columns of matrix: ";
cin >> r >> c;
// Storing element of matrix entered by user in array a[][].
cout << endl << "Enter elements of matrix: " << endl;
for(i = 0; i < r; ++i)
for(j = 0; j < c; ++j)
{
cout << "Enter elements a" << i + 1 << j + 1 << ": ";
cin >> a[i][j];
}
// Displaying the matrix a[][]
cout << endl << "Entered Matrix: " << endl;
for(i = 0; i < r; ++i)
for(j = 0; j < c; ++j)
{
cout << " " << a[i][j];
if(j == c - 1)
cout << endl << endl;
}
// Finding transpose of matrix a[][] and storing it in array trans[][].
for(i = 0; i < r; ++i)
for(j = 0; j < c; ++j)
{
trans[j][i]=a[i][j];
}
// Displaying the transpose,i.e, Displaying array trans[][].
cout << endl << "Transpose of Matrix: " << endl;
for(i = 0; i < c; ++i)
for(j = 0; j < r; ++j)
{
cout << " " << trans[i][j];
if(j == r - 1)
cout << endl << endl;
}
return 0;
}
```

#### Output

```
Enter rows and column of matrix: 2
3
Enter elements of matrix:
Enter elements a11: 1
Enter elements a12: 2
Enter elements a13: 9
Enter elements a21: 0
Enter elements a22: 4
Enter elements a23: 7
Entered Matrix:
1 2 9
0 4 7
Transpose of Matrix:
1 0
2 4
9 7
```

**Related Program**

- C++ Program to find Nth node in a Linked List
- C++ Program to Find GCD Using Recursion
- C++ Program to Generate Multiplication Table
- C++ Program to Display Fibonacci Series
- C++ Program to Find GCD
- C++ Program to Find LCM

Ask your questions and clarify your/others doubts by commenting.** Documentation**